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Abstract. We study the exchange and correlation effects on the ground-state properties of dipolar
complexes (diplons) formed by the surface electrons on a liquid helium film and positive ions in
the substrate supporting the helium film. We use the self-consistent-field approximation including
the short-range correlations. The local-field correction, static structure function, exchange and
correlation energies, and collective mode dispersions are calculated for systems with different
substrates.

1. Introduction

The two-dimensional (2D) electron gas formed at the surface of liquid helium is a subject of
continuing interest for several reasons [1]. Firstly, the various laws of interaction between the
electrons in different experimental set-ups can be easily understood. Secondly, the density of
electrons can be drastically varied by tuning the experimental parameters. For instance, the
crystallization of a 2D electron system at low density is observed [2] and electrons on liquid
helium are being proposed as viable systems for analogue quantum computers [3]. These
interesting possibilities provide a realistic system against which many-body theories can be
tested.

The 2D electron gas as formed above the surface of a liquid helium film supported by
a dielectric substrate was recognized as offering possibilities for exploring the degenerate
regime and has been the subject of numerous studies. Because of the stabilization of the
helium film by the attractive part of the interaction between helium atoms and the substrate
and the enhanced screening of the Coulomb interaction by the image charges in the substrate
it becomes possible to attain the quantum regime [4, 5]. The exchange–correlation effects in
a 2D electron system on a finite-thickness liquid helium film and a substrate were studied by
Rinoet al [6]. and Peeters [7] in the classical regime and by de Freitaset al [8] in the quantum
regime. The results of these calculations have shown the importance of correctly treating the
short-range correlations in describing the many-body properties. Recent experiments have
started to probe the quantum regime in these systems [9, 10]. One related system is that of
dipolar complexes which are called diplons. Diplons are bound dipoles made up of positive
charges on an insulating substrate and electrons residing on the surface of a helium film on top
of the substrate [11–13]. The system of diplons in the classical regime has been investigated
by de Freitaset al [14]. In a recent work Ĉandidoet al [15] calculated the phase diagram
and Wigner crystal properties of diplons. Experimental observations of the diplon states were
reported by a number of groups [16, 17]. Dahm [18] has suggested the possibility of Mott
transition for the electrons bound to a lattice of positive ions beneath the helium film.
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Our aim in this work is to study the ground-state properties of diplons in the degenerate
regime. As in the previous works [11,14,15] we assume that the positive ions on the substrate
are mobile, and diplons form an interacting many-body system. We use the self-consistent-
field approach of Singwiet al [19] (STLS) to calculate exchange–correlation effects. The
STLS method has been successfully applied to a vast range of interacting electron systems
[20, 21]. The correlation effects beyond the mean-field random-phase approximation (RPA)
are described by a local-field correction. We further adopt the so-called sum-rule version of
the STLS approach as developed by Gold [22] and Gold and Calmels [23]. which simplifies
the numerical effort of solving a coupled set of nonlinear integral equations. We thus consider
the various ground-state correlation functions, exchange–correlation energies, and collective
mode dispersions for different substrates. Our results should be useful for experimentalists,
since similar calculations can be produced with great ease for other sets of parameters. Since
similar calculations were performed in the classical regime [14], our results will complement
them to give a more general viewpoint.

The rest of this paper is organized as follows. We introduce the diplon interaction potential
and the mean-field equations used to calculate the correlation effects in section 2. The results
of our sum-rule version calculations are reported in section 3. We conclude in section 4 with
a brief summary and remarks on possible extensions of our calculations.

2. Model and theory

The diplon–diplon interaction potential in the Fourier space is given by [15]

V (q) = 2πe2

q

{
δ1[1− e−qd ] + δ2[1− e−2qd ]

}
(1)

whereδ1 = 4/(εs +1) andδ2 = (εs−1)/(εs +1). Hereεs is the static dielectric constant of the
substrate material and we assume that the dielectric constant of the liquid helium is unity. In the
subsequent calculations we consider (i) a metallic substrate withεs = ∞ (δ1 = 0 andδ2 = 1),
(ii) a solid-neon substrate withε = 2 (δ1 = 4/3 andδ2 = 1/3), and (iii) a glass substrate
(sapphire) withεs = 10 (δ1 = 4/11 andδ2 = 9/11). In the above interaction potential,d is
the thickness of the liquid helium film, which can also be regarded as the distance between the
layers of electrons and positive ions. The chief quantity characterizing the zero-temperature,
degenerate electrons is the dimensionless density parameterrs = 1/(πnaB), which is given in
terms of the 2D electron densityn, and the Bohr radiusaB = h̄2/(me2). In the following, we
find it convenient to scale all lengths with the inverse Fermi wave vectorkF = (2πn)1/2, and
energies with rydbergs (Ryd= h̄2/(2ma2

B)).
The density–density response of a many-body system for weak-to-intermediate interaction

strength may be approximately expressed as

χ(q, ω) = χ0(q, ω)

1− V (q)[1−G(q)]χ0(q, ω)
(2)

in which χ0(q, ω) is the free-electron response andG(q) is the local-field factor describing
the exchange and short-range correlation effects beyond the RPA. The RPA is recovered by
settingG(q) = 0. In the STLS approach the local-field correction describing the correlation
effects is given by an integral over the static structure factorS(q) which in turn is determined
by the local-field factor. The coupled equations within the self-consistent-field approximation
must be solved numerically. Similarly to the case for the other 2D electron systems [8, 24],
we obtain for the diplon problem

GSTLS= 1

n

∫ ∞
0

dk k[1− S(k)]
∫ 2π

0
dφ

q + k cosφ

(q2 + k2 + 2kq cosφ)1/2
F(|q + k|)
F (q)

(3)
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where we have definedV (q) = (2πe2/q)F (q). The above form of the local-field factor for
the electrons on the surface of a helium film supported by a metallic substrate (δ1 = 0 and
δ2 = 1) has been considered by de Freitaset al [8]. The static structure factor is evaluated by
means of the fluctuation-dissipation theorem:

S(q) = − 1

nπ

∫ ∞
0

dω Im[χ(q, ω)] (4)

which contains contributions from the single-particle excitations (electron–hole pair excit-
ations) and the collective modes.

Rather than attempting to solve the full STLS equations numerically, we adopt the sum-
rule version introduced by Gold [22]. The sum-rule approach to the STLS equations has been
successfully applied to electron gas problems in various dimensions [23]. We propose the
following analytical form to describe the local-field correction:

G(q) = C1(rs, d)q

[q2 +C2(rs, d)2]1/2

F([q2 +C2(rs, d)
2]1/2)

F (q)
(5)

in terms of thers- andd-dependent parametersC1(rs, d) andC2(rs, d). The above form of
the local-field factor is motivated by the Hubbard approximation and may be regarded as a
generalized form of it. The limiting forms ofG(q) for long wavelengths (q → 0) and as
q →∞ are given by

G(q → 0) = C1(rs, d)F (C2(rs, d))

C2(rs, d)d(δ1 + 2δ2)
(6)

and

G(q →∞) = C1(rs, d) (7)

respectively. In obtaining the above limits we have used the fact that

F(q → 0) = qd(δ1 + 2δ2).

Using the analytical expression for the local-field correction, and the exact STLS form
GSTLS(q), we determine the coefficientsC1(rs, d) andC2(rs, d) within the sum-rule approach
by comparing the small- and large-q limits of both equation (3) and equation (5), obtaining

C1(rs, d) =
∫ ∞

0
dk k[1− S(k)] (8)

and
C1(rs, d)F (C2(rs, d))

C2(rs, d)
= 1

2

∫ ∞
0

dk [1− S(k)]F(k). (9)

Thus, our equation (5) is an interpolation formula for the STLS local-field factor constrained
to reproduce the low- and high-q behaviour.

We have also found it useful to employ the following analytical form of the static structure
factor:

S(q) = [1/S0(q)
2 + 4mnV (q)[1−G(q)]/q2

]−1/2
(10)

which may be regarded as the generalized mean-spherical approximation. Similar forms of
S(q) have been used by Gold [22] and Gold and Calmels [23]. This analytical form of
S(q) takes the single-particle effects (throughS0(q)) and the collective effects (through the
second term) in the above expression into account; these determine the underlying physics in
different density regimes. Equation (10) can most easily be obtained within the mean-spherical
approximation which replaces the noninteracting response function for fermions with that of
bosons in the spirit of the plasmon-pole approximation. The power of the sum-rule approach
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lies in the fact that it simplifies the self-consistent calculation ofG(q) andS(q) based on
an iterative scheme. Previous applications [22, 23] have shown that the sum-rule version
faithfully reproduces the results of full STLS calculations, and we believe that it also works
well in the present problem. The mean-field-approximation nature of the STLS scheme limits
its applicability to very low-density systems (say,rs & 20).

3. Results

We have solved the coupled integral equations for the coefficientsC1(rs, d) andC2(rs, d)

numerically for a variety of values of the density parameterrs and liquid helium film thickness
d. Our results for metallic, solid-neon, and sapphire substrates are summarized in tables 1–3,
respectively. Once the unknown coefficients in the local-field factorG(q) are determined,
all the physical properties of a system of interacting diplons can be calculated. We show the

Table 1. The coefficients in the local-field factorG(q) for a metallic substrate.

d = 0.1aB

rs C1(rs , d) C2(rs , d)

0.1 0.56728 1.85268
0.5 0.71893 4.69988
1.0 0.80437 8.10310
5.0 0.98958 33.42120

10.0 1.05592 63.72250
20.0 1.11390 122.91904

d = aB
rs C1(rs , d) C2(rs , d)

0.1 0.56561 1.31629
0.5 0.74177 1.75473
1.0 0.87334 2.19544
5.0 1.16357 4.58514

10.0 1.21957 6.81926
20.0 1.24389 10.68602

d = 10aB

rs C1(rs , d) C2(rs , d)

0.1 0.56519 1.26931
0.5 0.73307 1.48278
1.0 0.84775 1.60926
5.0 1.07392 1.83709

10.0 1.11771 1.94123
20.0 1.12883 2.09591

d = 100aB

rs C1(rs , d) C2(rs , d)

0.1 0.56514 1.26475
0.5 0.73218 1.45857
1.0 0.84491 1.56025
5.0 1.05228 1.61786

10.0 1.08041 1.54916
20.0 1.08254 1.45894
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Table 2. The coefficients in the local-field factorG(q) for a solid-neon substrate (εs = 2).

d = 0.1aB

rs C1(rs , d) C2(rs , d)

0.1 0.60281 2.36845
0.5 0.77547 6.89243
1.0 0.85948 12.19799
5.0 1.03139 51.69671

10.0 1.09173 99.08042
20.0 1.14443 191.77890

d = aB
rs C1(rs , d) C2(rs , d)

0.1 0.60286 1.40687
0.5 0.83656 2.09417
1.0 0.97881 2.74688
5.0 1.19946 6.06144

10.0 1.22994 9.20768
20.0 1.24221 14.74052

d = 10aB

rs C1(rs , d) C2(rs , d)

0.1 0.60163 1.31924
0.5 0.81660 1.57988
1.0 0.93466 1.70260
5.0 1.11145 1.93824

10.0 1.12914 2.08102
20.0 1.11547 2.26326

d = 100aB

rs C1(rs , d) C2(rs , d)

0.1 0.60151 1.31088
0.5 0.81430 1.53573
1.0 0.92811 1.61513
5.0 1.07646 1.57325

10.0 1.08402 1.48742
20.0 1.07675 1.40323

dependence ofG(q) on the helium film thickness in figure 1 for the case of a metallic substrate.
For small values ofd, the local-field factor has a finite value atq ≈ 0, since the diplon–diplon
interaction assumes a constant formV (q) = 4πe2d asqd � 1. G(q) for other substrates
shows similar qualitative and quantitative behaviour to that in figure 1. It is interesting to note
that the long-wavelength limit ofG(q → 0) does not yield the RPA results as in the uniform
electron gas systems interacting via the bare Coulomb potential. The dipolar nature of the
interaction is responsible for this behaviour [8]. The static structure factor atrs = 10 for a
sapphire substrate is displayed in figure 2. The dotted, dashed, dot–dashed, and solid lines
indicated = 0.1aB , d = aB , d = 10aB , andd = 100aB , respectively. The thin lines show
the RPA results, i.e. whenG(q) = 0. We note that for small values ofd the STLS and RPA
static structure factors are rather close for this relatively low-density example (rs = 10), but
asd is increased the typical differences between the STLS and RPA results become clearer.
We have also obtainedS(q) for other types of substrate and the results are qualitatively almost
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Table 3. The coefficients in the local-field factorG(q) for a sapphire substrate (εs = 10).

d = 0.1aB

rs C1(rs , d) C2(rs , d)

0.1 0.57707 2.00574
0.5 0.73406 5.23562
1.0 0.81887 9.06512
5.0 0.99995 37.51263

10.0 1.06449 71.55012
20.0 1.12089 138.03538

d = aB
rs C1(rs , d) C2(rs , d)

0.1 0.57624 1.34623
0.5 0.77093 1.87207
1.0 0.90630 2.37670
5.0 1.17200 4.96195

10.0 1.21924 7.37532
20.0 1.23964 11.57061

d = 10aB

rs C1(rs , d) C2(rs , d)

0.1 0.57561 1.28419
0.5 0.75938 1.51643
1.0 0.87696 1.64568
5.0 1.08955 1.88625

10.0 1.12328 2.00060
20.0 1.12398 2.15145

d = 100aB

rs C1(rs , d) C2(rs , d)

0.1 0.57554 1.27819
0.5 0.75806 1.48456
1.0 0.87289 1.58153
5.0 1.06256 1.60768

10.0 1.08314 1.53272
20.0 1.08156 1.44491

the same. The most interesting feature of ourS(q) results based on the degenerate electron
gas model is that for small values ofd, S(q) approaches the noninteracting case valueS0(q),
whereas in the classical case [6,14] a finite value is reached asq → 0.

3.1. The pair-correlation function

The probability of finding two electrons separated by a distancer is given by

g(r) = 1 +
∫ ∞

0
dk kJ0(kr)[S(k)− 1] (11)

where J0(x) is the zeroth-order Bessel function. Using the analytic form ofS(q) with
the previously determined coefficientsC1(rs, d) and C2(rs, d) we evaluate equation (11)
numerically. Figure 3 illustrates the pair-correlation function for diplons on a solid-neon
substrate atrs = 2 for two different helium film thicknesses (solid line:d = 50aB ; dashed



Diplons in the degenerate regime 6699

Figure 1. The local-field factorG(q) at rs = 5 for a metallic substrate. The dotted, dashed,
dot–dashed, and solid lines indicated = 0.1aB , d = aB , d = 10aB , andd = 100aB , respectively.

Figure 2. The static structure factorS(q) atrs = 10 for a sapphire substrate (εs = 10). The dotted,
dashed, dot–dashed, and solid lines indicated = 0.1aB , d = aB , d = 10aB , andd = 100aB ,
respectively. The thick and thin lines are with and without the local-field correction.

line: d = 10aB). The results forg(r) in the RPA are also depicted by the thin lines. We observe
that the unphysically large negative behaviour ofg(r) in the RPA is largely remedied when
the local-field effects are taken into account. The pair-correlation function at zero separation,
g(0), takes a particularly simple form in our approximate scheme,g(0) = 1− C1(rs, d). In
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figure 4 we showg(0) as a function of the density parameterrs for diplons on a neon substrate.
g(0) calculated in the STLS scheme, in comparison to the RPA, becomes negative at a higher
rs-value. This shows the importance of including the short-range correlation effects in the
calculation of the ground-state structure.

Figure 3. The pair-correlation functiong(r) at rs = 2 for a solid-neon substrate. The solid and
dashed lines indicated = 50aB andd = 10aB , respectively. The RPA results forg(r) are shown
by the thin lines.

Figure 4. The pair-correlation function at zero separationg(0) as a function ofrs = 2 for a solid-
neon substrate. The solid and dashed lines indicated = 100aB andd = 10aB , respectively. The
thin line is the RPA result forg(0).
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3.2. Exchange and correlation energies

The ground-state energy of the interacting system of diplons is written as a sum of the kinetic
energy and exchange and correlation terms. The kinetic energy per particle is simplyK = 1/r2

s

(in units of rydbergs). The exchange energy is given by

Eex =
√

2

rs

∫ ∞
0

dq F(q)[S0(q)− 1] (12)

whereS0(q) is the Hartree–Fock static structure factor appropriate for a noninteracting system.
The exchange energyEex as a function ofrs is shown in figure 5. The correlation energy, on
the other hand, is given by

Ecor =
√

2

r2
s

∫ rs

0
dr ′s

∫ ∞
0

dq F(q)[S(q; rs)− S0(q)] (13)

as an integral over the coupling constant. The correlation energyEcor for diplons of the same
substrate is shown in figure 6(a) for several helium film thicknesses. We observe that the
correlation energy is very important in the density range of interest. The RPA (shown by thin
lines) overestimates the correlation energy which is more visible for large film thicknesses.
To highlight the difference between the degenerate and the classical regimes [6], we plot the
correlation energyEcor as a function of the helium film thickness for different substrates in
figure 6(b).Ecor becomes negligibly small asd vanishes, because of the enhanced screening of
the electrons by the substrate as in the classical case. Similarly, the correlation energy tends to
different constant values (depending on the substrate) for larged. Other thermodynamic
quantities of interest such as the pressure and compressibility can easily be evaluated as
derivatives of the ground-state energy terms with respect to the density parameter.

Figure 5. The exchange energyEex as a function ofrs for a solid-neon substrate. The dotted,
dashed, dot–dashed, and solid lines indicated = 0.1aB , d = aB , d = 10aB , andd = 100aB ,
respectively.
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(a)

(b)

Figure 6. (a) The correlation energyEcor as a function ofrs for a solid-neon substrate. The dotted,
dashed, dot–dashed, and solid lines indicated = 0.1aB , d = aB , d = 10aB , andd = 100aB ,
respectively. (b)Ecor as a function ofd. The solid, dot–dashed, and dashed lines indicate metallic,
solid-neon, and sapphire substrates, respectively. The STLS and RPA calculations are distinguished
by the thick and thin lines respectively.

3.3. Collective excitations

The collective excitation modes of the interacting system of diplons are calculated from the
zero of 1− V (q)[1 − G(q)]χ0(q, ωpl) = 0, whereχ0(q, ω) is the free-electron dynamic
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susceptibility in 2D. We find that the dispersion relation for diplon plasmons is given by

ωpl(q)/EF = q(1 + z)

[
q2 +

4

z2 + 2z

]1/2

(14)

in whichz = q/[√2rsF (q)(1−G(q))] (here the wave vectorq is scaled bykF ). We use our
analytic form of the local-field factor to calculate the dispersion of the collective modes. Results
for the neon and sapphire substrates are shown in figure 7 for various helium film thicknesses
andrs-values. In the thin-film limit (qd � 1) we observe that the collective mode becomes
sound-like in the long-wavelength limitωpl/EF ' sq, with s = 2(1 + 1/(z2

0 + 2z0))
1/2,

wherez0 = 1/[
√

2rsd(δ1 + 2δ2)(1 − G(0))]. In the opposite limit of large helium film
thickness (qd � 1), the collective modes assume the form of the typical 2D plasma mode
ωpl/EF ' (

√
2rs(δ1 + 2δ2)(1−G(0))q)1/2. The plasmons enter the particle–hole excitation

region at a critical wave vectorqc, determined fromωpl(qc) = q2
c /2 + qc. Beyondqc the

collective modes are heavily damped. The collective modes of diplons with plasmon dispersion
and damping properties should in principle be amenable to experimental observation.

The plasmon density of states is defined byD(E) = ∑
q δ(E − ωpl(q)). Using the

analytical expression for the collective mode dispersionωpl(q), we find that the density of
states is given by

D(E) = m

π

q0

(dωpl/dq)
∣∣
q0

(15)

whereq0 is the root of the equation

q(1 + z)

[
q2 +

4

z2 + 2z

]1/2

− E = 0. (16)

In figure 8 we display the plasmon density of states as a function of energy for a metallic
substrate atrs = 10. The cases ford = aB , d = 10aB , andd = 100aB are shown by the
dotted, dashed, and solid lines, respectively.D(E) exhibits a sharp cut-off beyond a critical
value of energy when the corresponding plasmon dispersion curve enters the particle–hole
continuum. In the RPA, the plasmons merge with the particle–hole continuum at a higher
wave-vector value; thusD(E) would exhibit a broader structure.

4. Discussion and concluding remarks

We have studied the exchange–correlation effects in a system of interacting diplons in the
quantum regime. Our results on the static structure factor, pair-correlation function, exchange–
correlation energy and plasmon dispersion complement a similar calculation performed by de
Freitaset al[14] in the classical regime. Including the short-range correlation effects, we obtain
significant improvements over the RPA in describing the physical properties of the system.
In the STLS treatment of the correlation effects the so-called compressibility sum rule is not
satisfied. This may be remedied by introducing another unknown parameter into the analytic
form of the proposed local-field factorG(q)as has been demonstrated by Gold [25] for electrons
interacting via the bare Coulomb potential. Experimental data on the diplon states are beginning
to become available through microwave absorption measurements [9,10,16,17]. Our results on
collective mode dispersions and thermodynamic quantities such as compressibility (obtained
from the ground-state energy) can be tested in future experiments where the quantum regime
is probed systematically with different helium film thicknesses and various substrates. The
motion of electrons perpendicular to the helium film surface can also be easily incorporated
into the present calculational scheme. For this purpose, the electronic wave function with
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(a)

(b)

Figure 7. (a) The plasmon dispersions atrs = 5 for a solid-neon substrate. The thin lines mark
the boundaries of the particle–hole continuum. Solid and dashed lines are for the STLS and RPA
treatments, respectively. Curves from bottom to top correspond tod = aB , d = 10aB , and
d = 100aB , respectively. (b) The plasmon dispersion atd = 100aB for a sapphire substrate.
Curves from bottom to top correspond tors = 1, rs = 10, andrs = 20, respectively.

finite-width effects and the resulting modification in the interaction potential of the diplons
needs to be considered. Our calculations presented here may be checked with the conventional
version of the self-consistent-field approach (as opposed to the sum-rule version), and even
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Figure 8. The plasmon density of states atrs = 10 for a metallic substrate (εs = ∞). The dotted,
dashed, and solid lines indicated = aB , d = 10aB , andd = 100aB , respectively.

better with quantum Monte Carlo simulations, if the experimental results warrant such detailed
comparison. The expected Wigner crystal phase at very low densities, the polaronic state of
diplons, and the bound-state properties in the presence of impurities could be subjects of further
studies.

Acknowledgments

This work was partially supported by the Scientific and Technical Research Council of Turkey
(TUBITAK) under Grant No TBAG-1662. We thank Professor I O Kulik and Dr C Bulutay
for fruitful discussions.

References

[1] For a recent review see Andrei E Y (ed) 1997Two-Dimensional Electron Systems(Dordrecht: Kluwer)
[2] Grimes C C and Adams G 1979Phys. Rev. Lett.42795

Gallet F, Deville G, Valdes A and Williams F I B 1982Phys. Rev. Lett.49212
[3] Platzman P M and Dykman M I 1999Science2841967
[4] Ma K B and Inkson C J 1978J. Phys. C: Solid State Phys.11L411
[5] Peeters F M and Platzman P M 1983Phys. Rev. Lett.502021
[6] Rino J-P, Studart N and Hipolito O 1984Phys. Rev.B 292584
[7] Peeters F M 1984Phys. Rev.B 30159
[8] de Freitas U, Ioriatti L C and Studart N 1987J. Phys. C: Solid State Phys.205983
[9] Leiderer P 1995Z. Phys.B 98303

[10] Gunzler T, Bitnar B, Mistura G, Neser S and Leiderer P 1996Surf. Sci.341+342831
[11] Monarkha Yu P and Kovdrya Yu Z 1982Fiz. Nizk. Temp.8 215 (Engl. Transl. 1982Sov. J. Low Temp. Phys.8

107)
[12] Monarkha Yu P 1982Fiz. Nizk. Temp.8 1133 (Engl. Transl. 1982Sov. J. Low Temp. Phys.8 571)
[13] Monarkha Yu P 1979Fiz. Nizk. Temp.5 9405 (Engl. Transl. 1979Sov. J. Low Temp. Phys.5 447)



6706 B Tanatar

[14] de Freitas U, Rino J-P and Studart N 1987Lectures on Surface Science: Proceedings of the Fourth Latin-
American Symposium (Springer Lectures on Surface Physics)ed G R Castro and M Cardona (Berlin: Springer)
p 177

[15] Cândido L, Rino J-P and Studart N 1998Phys. Rev.B 582844
[16] Karamushko V I, Kovdrya Yu Z, Mende F F and Nikolaenko V A 1982Fiz. Nizk. Temp.8 219 (Engl. Transl.

1982Sov. J. Low Temp. Phys.8 109)
Kovdrya Yu Z, Mende F F and Nikolaenko V A 1984Fiz. Nizk. Temp.101129 (Engl. Transl. 1984Sov. J. Low

Temp. Phys.10589)
[17] Lehndorff B, Vossloh T, Gunzler T and Dransfeld K 1992Surf. Sci.263674
[18] Dahm A 1995Z. Phys.B 98333
[19] Singwi K S, Tosi M P, Land R H and Sj̈olander A 1968Phys. Rev.176589
[20] Singwi K S and Tosi M P 1981Solid State Physicsvol 36 (New York: Academic) p 177
[21] Jena P, Kalia R, Vashishta P and Tosi M P (ed) 1990Correlations in Electronic and Atomic Fluids(Singapore:

World Scientific)
[22] Gold A 1992Z. Phys.B 891
[23] Gold A and Calmels L 1993Phys. Rev.B 4811 622
[24] Jonson M 1976J. Phys. C: Solid State Phys.9 3055
[25] Gold A 1997Z. Phys.B 103491


